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Abstract

This paper presents a supervised method for recognizing

entailment between patterns such as “Y病気 に効く X薬”

(“Xdrug efficient against Ydisease”). Using distributional

similarity features as well as surface features and lexical re-

sources, we were able to acquire 185 million such pairs in

Japanese with a precision of 80% from our 600 million pages

web archive.

1 Introduction

Recognizing textual entailment has become an important

topic in Natural Language Processing (NLP) since its intro-

duction by Dagan et al. (2006). We say a text L entails a

second text R if a human who reads L would be able to infer

that R is true. For example, “珊瑚にダメージを与えている
のだ” (“causes damage to coral”) entails “珊瑚がダメージ
を受けるのだ” (“Coral suffers from damage”), but it does

not entail “珊瑚をダメージから守る” (“protect coral from

damage”). Recognizing textual entailment has a variety of

applications in NLP, such as Question-Answering, summa-

rization, information extraction and evaluation of machine

translation.

Techniques for recognizing textual entailment between

sentences vary from using logical representations of text [10,

17] to semantic analysis [3] or syntactic parsing [1, 18].

While all of these works deal with the recognition of entail-

ment between two sentences or two text fragments, other

works focus on the acquisition of entailment pairs, usually

unary or binary patterns [2, 6, 9, 13]. Such pattern pairs

can then be used later in a full-fledged system to recognize

entailment between sentences [14] or to answer factoid ques-

tions [16].

Our work focuses on the acquisition of entailment pairs

between typed lexico-syntactic binary patterns such as

“X生物 に Y損害 を与えているのだ” (“Causes Yharm

to Xlife form”) or “Y病気 に効く X薬” (“Xdrug efficient

against Ydisease”). The subscripts “生物” (“life form”) and

“薬” (“drug”) are examples of types that restrict the set of
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nouns which can fill the variables slots, and we say a pat-

tern p entails a pattern q if for any noun-pairs that can fill

the variables slots of p with the correct types one can de-

duce the information given by q with the same noun-pair.

Our target is a set of 11 billion such typed pattern pairs in

Japanese extracted from our 600 million web pages corpus.

We wish to extract from this set highly precise entailment

pairs to use into the factoid QA module of our large-scale

Web information analysis system, WISDOM 2013 [16].

Acquisition of entailment pattern pairs usually exploits

distributional similarity based scores to classify pattern

pairs into entailment or non-entailment [6, 9, 19]. How-

ever, such scores did not give a strong performance on our

target set. The main reason was that most patterns have

low frequency because of the extensive coverage of this data

as well as the restriction on typed patterns and, as such,

distributional similarity based scores are less reliable.

We show in this paper that we can build a strong classifier

for entailment between patterns by combining these distri-

butional similarity scores with surface features and lexical

resources, inspired by systems built to recognize entailment

between sentences [11]. We built training data for this clas-

sifier by automatically choosing among various sets of hand-

labeled pattern pairs an optimal combination of sets, and

we trained a classifier which extracted from our candidate

pattern pairs set around 160 million pattern pairs with a

precision for entailment of above 80%. We also propose a

classification of pattern pairs which we exploited to train

more specific classifiers and extended our result to 185 mil-

lion pattern pairs with about 80% precision. To the best of

our knowledge, this is the biggest entailment data built for

Japanese to this day.

The remaining of this paper is organized as follows: Sec-

tion 2 details how we extracted the pattern pairs set we

used as classification target. Section 3 explains how we built

the training data for our classifier. In Section 4, we detail

the feature set used by our classifier. Section 5 presents

experimental results as well as our proposed pattern pairs

classification. A conclusion follows in Section 6.

2 Target data

In this section, we explain how we extracted from our cor-

pus of 600 million Japanese web pages a set of 11 billion

candidate typed binary pattern pairs to be classified as en-

tailment and non-entailment pairs.



2.1 Patterns

We extracted lexico-syntactic patterns from a corpus of 600

million web pages parsed with KNP1. In this work, patterns

consist of words on the path of dependency relations con-

necting two nouns in a single sentence. We also restricted

our patterns to those that co-occur with at least 10 different

noun-pairs in our corpus and are at most 10 bunsetsu2 long.

We obtained this way 63 million unique patterns and their

co-occurring noun pairs.

2.2 Typed patterns

As mentioned in the introduction, we focus on typed pat-

terns, which are lexico-syntactic patterns that place seman-

tic class restrictions on the noun pairs they co-occur with,

such as “X生物 に Y損害 を与えているのだ” (“Causes

Yharm to Xlife form”). The subscripts “損害” (“harm”) and

“生物” (“life form”) specify the permitted semantic classes

of the X and Y slot fillers. As shown in past works [2, 4],

typed patterns make it possible to distinguish between mul-

tiple senses of ambiguous patterns, thus greatly reducing er-

rors due to pattern ambiguity. For instance, the typed pat-

tern “X損害にY生物を与えているのだ” (“Causes Xharm

to Ylife form”) entails that “X生物 が Y損害 を受けるの
だ” (“Xlife form suffers from Yharm”), which may not hold

for a differently typed version of the same pattern such as

“X人 に Y感じ を与えているのだ” (“Causes Yemotion to

Xperson”).

As a source of semantic classes for pattern typing, pre-

vious works have mainly used named entity recognizers or

lexical resources such as WordNet [12]. We feel this limits

the coverage of typed patterns, so in this work we follow

De Saeger et al. [4] in inducing semantic classes automati-

cally from our corpus. For this we use the EM based noun

clustering algorithm presented by Kazama et al. [7], which

computes the probability that a word w belongs to a hid-

den class c, i.e., P (c|w). We clustered 1 million nouns into

500 semantic classes, which gives 250,000 possible semantic

class combinations for typing patterns. Using these class

pairs, we obtained a total of 2.8 billion typed patterns co-

occuring with at least one noun-pair in their given semantic

class pair. From here on, and unless specified otherwise, we

will always consider patterns or relations between patterns

in the context of some semantic class pair.

2.3 Entailment candidate pattern pairs for
classification

Since two patterns taken randomly have a very low proba-

bility of having an entailment relation, even when limited to

patterns in the same semantic class pair, we decided to re-

strict our candidate pattern pairs for classification to the set

TARGET of pairs of patterns which co-occur with at least

three common distinct noun pairs. While this restriction

may seem strict, there are still more than 11 billion pattern

pairs to classify in set TARGET. Set TARGET contains ap-

1Kurohashi-Nagao Parser, http://nlp.ist.i.kyotou.ac.jp/
EN/index.php?KNP

2bunsetsu: smallest unit of words that sounds natural in a
sentence

proximately 7% of pairs with an entailment relation (about

770 million entailment pairs).

3 Training data

In this section, we explain how we built sets of hand-labeled

data for entailment, and then how we selected the most

appropriate sets of labeled data to use as training data for

our classifier.

3.1 Annotated data sets

In the course of this research and of other works related

to pattern entailment, we have built multiple hand-labeled

entailment pair sets: we now have 11 sets of pattern pairs

whose size range from 500 pattern pairs to 22,500 pattern

pairs, for a total of 74,000 pattern pairs. 10 out of these sets

consist of pattern pairs randomly selected from TARGET

but with different restrictions each, like for example having

high distributional similarity scores or having some specific

kind of verb pairs. The last set is not restricted to TAR-

GET, but all of its (single) patterns appear in our corpus.

All of these pattern pairs were annotated by three human

annotators as entailment or non-entailment. We considered

a pattern pair as a true entailment relation if at least two

out of the three annotators marked it as positive, and as

non-entailment otherwise. The inter-rater agreement score

(Fleiss Kappa) for the whole of the pattern pairs was 0.67,

indicating substantial agreement [8].

We say binary patterns 〈p, q〉 such as

〈“Xに Yを与えているのだ”, “Xが Yを受けるのだ”〉
(〈“causes Y to X”, “X suffers from Y”〉) have an entail-

ment relation if a human reader reading p is able to infer

the information given by q for any noun pair that can

instantiate the patterns’ variables in the provided semantic

class pair. Because our semantic classes are obtained by

automatic clustering and have no meaningful labels, we

followed Szpektor et al. [15] and provided the annotators

with three random noun pairs that co-occur with the

first pattern of a pair as a proxy for the class pair. The

annotators marked a given pattern pair as positive if the

entailment relation between the patterns held for all three

noun pairs presented.

3.2 Training data selection

While most of our hand-labeled data sets are extracted from

TARGET, they usually make bad representatives of TAR-

GET because their pattern pairs were not sampled ran-

domly. For this reason, we believe that using all of them

as training data may overall hurt our classifier and hence

devised the following process to select an optimal set of pat-

tern pairs to use a training data:

1. Select one set to be used as TEST data.

2. Generate every possible combination of the remaining

pattern pairs sets: these combination of sets are used

as candidate training data sets (for examples, for three

sets A, B and C, the candidate training data sets would

be the seven sets A, B, C, A ∪ B, B ∪ C, A ∪ C and

A ∪ B ∪ C).

3. Train a classifier for each candidate training data set.



4. Evaluate each classifier by the average precision it ob-

tains when classifying TEST, and choose the classifier

that obtains the best average precision.

Plotting precision P (r) as a function of recall r obtained

when ranking set TEST, the average precision over set

TEST is defined as follows:

AveP =

n∑
k=1

P (k)δr(k) (1)

Here, k is the rank in the sequence of samples of TEST,

n is the number of elements in TEST, P (k) is the precision

at cut-off k in the list, and δr(k) is the change in recall from

items k − 1 to k.

In extreme cases, average precision may rank low a clas-

sifier with high precision for low recall and low precision

otherwise, even though such a classifier’s top ranked pairs

may be of very high quality. We realize that this ranking

of classifiers using average precision may not be the best

way to select a classifier, especially since this formula does

not take at all into account local maxima, but such extreme

cases are rare and we believe that this ranking is fair overall.

Since we wanted to optimize our classifier for classify-

ing TARGET, we used as set TEST in our experiments

a set of 5000 hand labeled pairs randomly sampled from

TARGET. We then tried the 1023 possible combinations of

the 10 remaining sets using the above procedure and, for

the combination with the highest average precision, we also

tried adding set TEST as training data by making a 10-fold

cross validation experiment (10-fold cross validation being

10 times more time expensive, we did not try it for every

possible combination of training data). The best classifier

we obtained has training data consisting of the combina-

tion of 8 data sets (including TEST), for a total of 67,000

training samples. We call this training data set TRAIN.

4 Features set

In this section, we present the three types of features used

for our classifier. The first type is surface features, which

consider n-grams of characters or morphemes extracted from

the patterns themselves and measure their similarity on the

surface level. The second type is lexical resources related

features, which signal the presence of some words or pairs of

words in the pattern pair in pre-computed word or word pair

databases such as pairs of synonyms or antonyms. Finally,

the third type is distributional similarity based features,

which measure the similarity between patterns in term of

the context they appear in, that is the set of noun pairs

they co-occur with. All of these features are summarized in

Table 1.

4.1 Surface features

We followed the work of Malakasiotis et. al [11] to design

this feature set. They propose, to recognize entailment be-

tween sentences, to combine different similarity measures

computed using bag-of-words representations of each sen-

tence. The underlying idea is that while a single similarity

measure can surely not solve the whole problem, combining

them in a classifier should provide enough evidence to judge

for an entailment relation.

To compute these features for a given pattern pair 〈p, q〉,
we first compute for each pattern the following bag-of-words:

(1) the sets of 1-, 2- and 3-grams of the pattern’s charac-

ters, (2) the sets of 1-, 2- and 3-grams of the pattern’s mor-

phemes, (3) stem versions of (2), (4) the n-grams sets of POS

tags of (2), and (5) the sets of verbs, adjectives and nouns of

the pattern (separately) as well as their stems, and (6) the

sets of sub-trees extracted from each pattern’s dependency

tree.

Then, for each pair of bag-of-words 〈P,Q〉 extracted from

p and q, we compute the following measures and scores: (a)

the cardinal of each set (two values), (b) the cardinal of the

sets intersection, (c) the ratio of elements in each set also in

the other (two values), (d) the pair’s Dice Coefficient, and

(e) the pair’s Jaccard score as well as a variant of this score,

discounted Jaccard score.

Representing the bag-of-words as multi-sets (i.e., fre-

quency vectors), we also compute the following distances

between P and Q: (f) the cosine distance, (g) the Manhat-

tan distance, (h) the Euclidian distance, and (i) a frequency

based variant of the Jaccard score.

Finally, considering the bag-of-words as ordered sets (in

the order in which the words or n-grams come in the pat-

terns), we compute the following two distances: (j) the Lev-

enshtein distance, and (k) the Jaro distance.

We also include the following as features: binary features

signalling the presence of each of the patterns 1-grams and

2-grams and each content-word pair extracted from the pat-

tern pair (content words are nouns, verbs and adjectives),

as well as the patterns length ratios.

4.2 Lexical resources features

Surface features can detect simple syntactical variations be-

tween patterns but lack higher level knowledge such as syn-

onymy or allography. To solve this problem, we integrate a

number of word pair databases in our classifier’s feature set.

We first extract from a pattern pair 〈p, q〉 the set of word

pairs 〈wp,wq〉 such that wp is in p and wq is in q. Then, for

each word-pair database, we set a feature to 1 if any word

pair 〈wp,wq〉 extracted from 〈p, q〉 is in this database. We

also do the same for the stems of the words, and for the

pairs 〈wp,wq〉 (some databases are directional, so we want

to detect relations both ways).

We use the following word pair databases: (a) 4 databases

of entailment verb pairs , (b) 4 databases of non-entailment

verb pairs, (c) 2 databases of allographic words and (d)

databases of synonyms, (e) antonyms and (f) part-of word

pairs, all of (a) to (f) available at the ALAGIN forum3 (ref-

erence code A-2, A-7 and A-9), (g) a database of allographic

words and (h) a database of antonyms, both extracted from

the morphological analyzer JUMAN’s dictionary4, (i) 16

databases of contradictory word pairs and template pairs

from a precedent research [5], and finally (j) the transitive

closure up to 7 steps obtained when combining (a), (c), (d)

and (g).

3http://www.alagin.jp/
4http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN



Table 1: Features summary, computed over a pair of patterns 〈p, q〉

su
rf

a
ce

Similarity measures: common elements ratios, Dice coefficient, Jaccard and discounted Jaccard scores, Cosine,
Euclidian, Manhattan, Levenshtein and Jaro distances; computed over: the patterns’ 1-, 2- and 3-grams sets of:

characters, morphemes, their stems & POS; content words and stems

binary feature for each of the patterns’ subtrees, 1- and 2-grams ; patterns’ lengths and length ratios

L
ex

ic
.

Entries in databases of verb entailments and non-entailments, synonyms, antonyms, allographs ; checked over:
pairs of content words, pairs of content word stems, same for the reverse pattern pair 〈q, p〉

d
is

.
si

m
. Distributional similarity measures: Common elements ratios, Jaccard and discounted Jaccard scores, sets and

sets intersection cardinality, DIRT [9], Weeds [19] and Hashimoto [6] scores; computed over: patterns’ co-occurring
noun pairs, POS tags of those, nouns co-occurring in each variable slot and with each unary sub-patterns

binary feature for each semantic class pair and individual classes, patterns frequency rank in the given class pair

Following the work on Excitation of [5], we also inte-

grate (k) 5 databases of unary patterns hand-labeled as ex-

citatory, inhibitory, neutral, ungrammatical or undecided.

Since those databases consists of single unary patterns (not

pairs like the previous ones), we have for each database a

feature for each pattern noting the presence of one of the

database’s elements in the pattern.

4.3 Distributional similarity features

Distributional similarity measures are based on the idea that

phrases with similar meaning tend to appear into similar

contexts. In the case of binary patterns, these measures

are computed over the sets of noun-pairs co-occurring with

each pattern, based on the intuition that patterns that co-

occur with similar noun-pairs should have similar meanings.

While these measures were at first proposed to detect para-

phrases [9], that is bi-directional entailment, some recently

proposed measures are directional and specifically used to

detect entailment [6, 19].

To compute these features for a given pattern 〈p, q〉, we

first compute for each pattern the following sets: (a) the set

of noun-pairs that co-occur with the pattern in our corpus,

(b) the two sets of nouns that co-occur with the pattern in

each variable slot, (c) the sets of POS-tags of each set of (b),

and (d) the two sets of nouns that co-occur with each of the

pattern’s unary sub-patterns in our corpus in the case where

each of the binary patterns p and q can be decomposed into

two unary sub-patterns, one attached to each variable.

Then, for each of these sets pairs 〈P,Q〉, we compute the

following scores: (a) the cardinal of each set (two values),

(b) the cardinal of the sets intersection, (c) the ratio of

elements in each set also in the other (two values), (d) the

pair’s Dice Coefficient, and (e) the pair’s Jaccard score as

well as a variant of this score, discounted Jaccard score.

Also, representing the sets as multi-sets (i.e., frequency

vectors), we also compute the following measures between

P and Q: (f) DIRT score [9], (g) Weeds’ precision [19], (h)

Hashimoto score [6] (we also compute (g) and (h) for the

pair 〈Q,P〉, since those scores are directional), and (i) a

frequency based variant of the Jaccard score.

Finally, although these are not technically distributional

similarity measures, we included the following as related

features: (α) the semantic classes in which the pattern pair

is considered, and (β) the rank of each pattern in terms of

number of co-occurring noun-pairs (lower-ranked patterns

have more generic meaning).

Figure 1: Precision curves for our method and three base-
lines (top 500 million pairs)

Figure 2: Ablation test (top 500 million pairs)

5 Experimental results

In this section, we present experimental results for our clas-

sifier as well as a categorization of the pattern pairs that we

used to further enhance the results of our method.

5.1 Basic Classification results

We trained a classifier using the training data set TRAIN

obtained as described in Section 3.2 and the software

TinySVM5 with a polynomial kernel of degree 2 (all ex-

periments were done in this setting, which we decided from

earlier experiments).

Using this classifier, we classified the 5000 pairs of set

TEST and ranked them by the score given by the classifier.

Assuming that these pairs are distributed uniformly over

5http://chasen.org/∼taku/software/TinySVM/



Table 2: Examples of acquired pattern pairs (with an example of noun-pair)

Entailing pattern Entailed pattern SVM score Category

X(画像)に Y(字)を載せる X(画像)に Y(字)を添える 0.737 Other
Put Y(characters) on the X(video) Attach Y(characters) to the Y(video)

X(カラオケ)で Y(練習)を始めます Y(練習)の X(カラオケ) 0.494 No content
Start Y(training) at the X(karaoke) Y(training)’s X(karaoke)

X(部屋)で Y(エアコン)をつけている X(部屋)で Y(エアコン)つけてる 0.346 Dimilar
the Y(air-conditioner) is set in the X(room) set the Y(air conditioner) in the X(room)

X(画像)が貼られた Y(ブログ) X(画像)を展示する Y(ブログ) 0.153 DB covered
X(videos) attached to the Y(blog) the Y(blog) displays X(videos)

X(珊瑚)に Y(ダメージ)を与えているのだ X(珊瑚)が Y(ダメージ)を受けるのだ 0.151 DB covered
causes Y(damage) to X(coral) X(coral) suffers from Y(damage)

Y(Ｓｉｔｅ)を始めた X(理由) Y(Ｓｉｔｅ)をしている X(理由) 0.045 Other
The X(reason) I started the Y(site) The X(reason) I am doing the Y(site)

Figure 3: Precision curves for each pair category (top 500
million pairs)

the ranking of TARGET, we drew in Figure 1 the precision

curve obtained by the classifier. For comparison purposes,

we also show the precision curves obtained when ranking

TEST pairs by three unsupervised baselines: Hashimoto

score [6], Weeds precision [19] and DIRT score [9]. We also

drew in Figure 2 the precision curves obtained by our clas-

sifier when using all the features, and when removing each

feature type (surface, lexical resources, distributional simi-

larity) in turn, for an ablation test.

According to these results, the top 160 million pattern

pairs ranked by our classifier have a precision of about 80%.

Table 2 presents examples of pairs acquired by our classifier.

Also, as shown by the performance obtained by the distri-

butional similarity based baselines, these cannot compete

with a supervised classifier in such a setting, although the

performance of the Hashimoto score is strong for an unsu-

pervised baseline. Finally, the ablation test shows that all

types of features are necessary to obtain a strong classifier,

although the surface features are the most prevalent of all.

5.2 Pattern pair categorization and enhanced
classification results

By analyzing the output of our classifier, we found it is

possible to classify pattern pairs into 4 categories according

to the patterns’ content words (here, a content word is a

noun, a verb or an adjective):

• “No content” pattern pairs, where at least one of the

patterns has no content word, like for example “Aの
B” (“A’s B”).

• “Similar” pattern pairs, where both patterns have at

least one content word in common.

• “Database covered” pattern pairs, where one of the pat-

tern pair’s content word pair is found into one of the

word pair databases we used in for our feature set.

• “Other” pattern pairs, which do not fit into any of the

previous three categories.

Using the same procedure described in Section 3.2, only

this time restricting test set TEST to pattern pairs of each

of the 4 categories in turn, we obtained 4 classifiers which

performance (in terms of average precision) is optimal when

classifying pairs of set TEST for each of the 4 categories.

Because they are optimal, these 4 classifiers perform in their

own categories at least better than the single classifier we

presented in the previous section. Hence, we were able to

improve the overall output of our method by classifying each

pattern pair of TARGET using the best classifier for the

pair’s category.

We drew in Figure 3 the precision curves obtained for

the four classifiers optimized for each of the four categories.

Clearly as expected, “Similar” pattern pairs are the easiest

to classify and those for which our method performs best.

Also, while “Database covered” pairs have strong evidence

showing their entailment/non-entailment in terms of a pair

of content words, the performance of our best classifier for

these pairs is disappointing. Finally, “Other” pairs are, as

expected, the most challenging. By combining the output of

these four classifiers whith a precision of 80%, we obtained

in total 185 million pairs with 80% precision for entailment.

This data is the final output of our work.

6 Conclusion

In this paper, we present the supervised method we used to

classify 11 billion pattern pairs into entailment and non-

entailment pairs. By combining distributional similarity

measures with surface features and lexical resources and



automatically combining hand-labeled data sets to gener-

ate our classifier’s training data, we were able to obtain a

set of 185 million pattern pairs with precision of about 80%.

We plan to release this data through the ALAGIN forum.
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