データ駆動知能システム研究センターでは、Web等に存在する大量のテキストを深く意味的に分析し、情報の価値ある組み合わせや、価値ある仮説を柔軟な入力を元に提示できる技術を開発しています。ますます複雑化していく現代社会において、一見かけ離れた情報間の予想もしなかった繋がりが非常に重大な帰結をもたらす事例がますます頻繁におきています。我々の目指す技術はそうした情報間の組み合わせをユーザに分かりやすい形で入手可能にするものです。より具体的には、文の同義性やテキストに書かれた因果関係などの事象間の意味的関係を元に、ユーザの多様なニーズに応えられる情報やその組み合わせ、あるいは仮説を、Web等に存在する膨大な情報源をもとに生成する技術です。こうした技術の開発には先進的な言語処理技術、膨大な言語資源が必要となりますが、これまでに開発してきた最先端技術や、関連分野を研究する公的機関としては日本最大級の計算リソースを用いてこれらの研究開発に挑んでいます。

最近の成果は、「次世代音声対話システムWEKDA」、「大規模Web情報分析システムWISDOM X」、「対災害SNS情報分析システムDISAANA」、「災害状況要約システムD-SUMM」の4つです。

1. 次世代音声対話システムWEKDA

WEKDA (WEb-based Knowledge Disseminating dialog Agent) は、ユーザが入力した発話に対して、質問を自動生成し、WISDOM Xで回答を探し、応答を生成する音声対話システムです。 このシステムでは、例えば「iPS細胞ってすごいよね」「煮物が食べたい」といったユーザの音声入力に対して、「iPS細胞で何を見る?」「煮物に何が良い?」といった質問を自動生成し、その質問に対してWISDOM Xが提供する回答(「治療薬候補」「和風な朝御飯」等)を基に、「iPS細胞で肥大型心筋症の治療薬候補を見つけた」「焼き魚に玉子に煮物で和風な朝御飯も良し」といった応答を生成します。これらの質問は、システムの応答の背後にある自然な意図や動機といったものに対応します。ユーザは、こうした応答によって、価値ある知識を取得したり、近々の生活を豊かにするヒントを得ることが可能になります。

WEKDAの応答と背後にある自然な意図や動機
WEKDAによる対話例
※ これらの対話例は開発中のものであり、現時点ではいかなる発話に対してもこのクオリティで応答ができるわけではありません。

2. 災害状況要約システムD-SUMM

災害状況要約システム D-SUMM は、Twitter上の災害情報を、わかりやすく整理、要約することによって、救援、避難等を支援するシステムです。DISAANAでは、「火災が発生している」「火事が起きている」など意味的に類似する被災報告が別々に出力されていましたが、D-SUMMでは、災害情報の意味的な分類を精査し、これらの報告をひとまとめにすることで、災害状況を、よりコンパクトかつ、わかりやすく提示することができるようになりました。エリア毎または、災害カテゴリー毎に災害情報を要約することができ、それらを地図上に表示することも可能です。2016年10月18日より試験公開しています。

D-SUMMによる被災報告の要約
D-SUMM による被災報告の要約の地図表示

3. 対災害SNS情報分析システムDISAANA

当機構耐災害ICT研究センター応用領域研究室と共同で、「今、まさに発信されている」Twitter上の災害情報をリアルタイムで分析し、質問に回答する対災害SNS情報分析システムDISAANAを開発し、2015年4月8日より試験公開しています。スマートフォンからアクセスしますと、スマートフォン対応版をお使いになれる他、熊本地震時のTwitterデータを分析できる試用版もお試しいただけます。

熊本地震での動作例
モバイル版での動作例

4. 大規模Web情報分析システムWISDOM X

40億件以上のWebページを深く意味まで分析し、「なに?」「なぜ?」「どうなる?」といったタイプの様々な質問に回答する大規模Web情報分析システム WISDOM X を開発し、2015年3月31日より試験公開しています。どのような質問を入力すべきかわからない場合には、キーワードを入力すると回答可能な質問を提案する他、質問の回答からさらなる質問を提案し、情報のさらなる深堀りを行ったり、Web上に書かれていない仮説を生成したりすることも可能です。

質問「資本主義がもたらしたものは何?」への回答
質問「なぜ日本はデフレに陥ったのか?」への回答
質問「人工知能が進化するとどうなる」への回答